Let a∈(0,2π), then the value of
lima→0a31∫0aℓn(1+tanatanx)dx is equal to
হানি নাটস
We are to evaluate the limit:
lima→0a31∫0aln(1+tanatanx)dx
Step 1: Approximate for small a
Since a→0, we can use the small-angle approximations:
- tana≈a+3a3
- tanx≈x+3x3
Thus, the integrand becomes:
ln(1+tanatanx)≈ln(1+(a+3a3)(x+3x3))
For small a and x, the higher-order terms can be neglected, so:
ln(1+tanatanx)≈ln(1+ax)
Step 2: Expand ln(1+ax) using Taylor series
The Taylor series expansion of ln(1+y) around y=0 is:
ln(1+y)=y−2y2+3y3−⋯
Substituting y=ax :
ln(1+ax)=ax−2(ax)2+3(ax)3−⋯
Step 3: Integrate term by term
Now, integrate ln(1+ax) from 0 to a :
∫0aln(1+ax)dx≈∫0a(ax−2a2x2+3a3x3)dx
Compute each term separately:
∫0aaxdx=a⋅2a2=2a3∫0a2a2x2dx=2a2⋅3a3=6a5∫0a3a3x3dx=3a3⋅4a4=12a7
Thus, the integral becomes:
∫0aln(1+ax)dx≈2a3−6a5+12a7
Step 4: Compute the limit
Now, divide by a3 and take the limit as a→0 :
lima→0a31(2a3−6a5+12a7)=lima→0(21−6a2+12a4)
As a→0, the higher-order terms vanish, and we are left with:
lima→0a31∫0aln(1+tanatanx)dx=21
Final Answer
21