x^n এর সহগ নির্ণয় বিষয়ক
The coefficient of x−4 x^{-4} x−4 in the expansion of (4x5+52x)8 ( \frac {4x}{5} + \frac {5}{2x} )^8 (54x+2x5)8 is?
625
1875
4375
None of these
Step 1: Find value of r to obtain given coefficient of x\textbf{Step 1: Find value of r to obtain given coefficient of x}Step 1: Find value of r to obtain given coefficient of x
Given equation is\text{Given equation is}Given equation is
(4x5+52x)8 \bigg( \dfrac {4x}{5} + \dfrac {5}{2x}\bigg)^8 (54x+2x5)8
Tn=Tr+1=nCrp(n−r).qrT_n= T_{r +1 }=^nC_r p^{ (n-r)}.q^rTn=Tr+1=nCrp(n−r).qr
⇒Tn=Tr+1\Rightarrow T_n=T_{r+1}⇒Tn=Tr+1
=8Cr.(4x5)(8−r).(52x)r = ^8C_r .\bigg( \dfrac {4x}{5}\bigg)^{(8-r)} .\bigg( \dfrac {5}{2x}\bigg)^r=8Cr.(54x)(8−r).(2x5)r
=8Cr.(45)(8−r)×(52)r×x8−r−r = ^8C_r .\bigg( \dfrac {4}{5}\bigg)^{(8-r)} \times \bigg( \dfrac {5}{2}\bigg)^r \times x^{8-r-r}=8Cr.(54)(8−r)×(25)r×x8−r−r
=8Crx(8−2r).(2(16−3r)5(8−2r)) = ^8C_r x^{(8 -2r)}. \bigg(\dfrac { 2^{(16 -3r)}}{5 ^{(8-2r)} }\bigg)=8Crx(8−2r).(5(8−2r)2(16−3r))
Step 2: Find value of coefficient of x−4\textbf{Step 2: Find value of coefficient of x$^{-4}$}Step 2: Find value of coefficient of x−4
To obtain coefficient of x−4:\text{To obtain coefficient of x}^{-4} : To obtain coefficient of x−4:
⇒8−2r=−4\Rightarrow 8-2r=-4 ⇒8−2r=−4
⇒\Rightarrow ⇒ 2r=122r=122r=12
∴\therefore ∴ r=6r=6 r=6
For r=6,7th term is given by-\text{For r=6,7th term is given by-}For r=6,7th term is given by-
T7=T6+1 T_7=T_{6+1}T7=T6+1
Therefore,value of coefficient of x−4 is 462\textbf{Therefore,value of coefficient of x$^{-4}$ is 462}Therefore,value of coefficient of x−4 is 462
Ai এর মাধ্যমে
১০ লক্ষ+ প্রশ্ন ডাটাবেজ
প্র্যাকটিস এর মাধ্যমে নিজেকে তৈরি করে ফেলো
উত্তর দিবে তোমার বই থেকে ও তোমার মত করে।
সারা দেশের শিক্ষার্থীদের মধ্যে নিজের অবস্থান যাচাই
f(x)=3+x2\mathrm{f}(\mathrm{x})=3+\frac{x}{2}f(x)=3+2x এবং g(p)=1−12pg(p)=1-\frac{1}{2} pg(p)=1−21p
(1+2y)m (1+2 y)^{\mathrm{m}} (1+2y)m একটি বীজগাণিতিক রাশি।
দৃশ্যকল্প-১ : (a+px)n,n∈N (a+p x)^{n}, n \in N (a+px)n,n∈N একটি দ্বিপদী রাশি।
দৃশ্যকল্প-২: φ(x)=px2+qx+r;p≠0 \varphi(\mathrm{x})=\mathrm{px}^{2}+\mathrm{qx}+\mathrm{r} ; \mathrm{p} \neq 0 φ(x)=px2+qx+r;p=0.
f(x)=(1−x4) f(x)=\left(1-\frac{x}{4}\right) f(x)=(1−4x) এবং g(x,y)=x+iy=z g(x, y)=x+i y=z g(x,y)=x+iy=z