∫02πsin2xdx=?
RMSTU A 19-20
To solve the integral ∫02πsin2xdx, we can use the trigonometric identity for sin2x:
sin2x=21−cos2x
Substitute this identity into the integral:
∫02πsin2xdx=∫02π21−cos2xdx
This separates into two integrals:
=21∫02π1dx−21∫02πcos2xdx
Calculate each integral:
21∫02π1dx=21[x]02π=21×(2π−0)=4π
21∫02πcos2xdx=21[2sin2x]02π=41(sin(π)−sin0)=41×(0−0)=0
Thus, the integral evaluates to:
4π−0=4π
Therefore, ∫02πsin2xdx=4π (Ans.)