If x=9319919271.....∞,y=43149−14271....∞, and z=∑r=1∞(1+i)−r, then arg(x+yz) is equal to
হানি নাটস
x=931+321+331...∞
x=91−3131
x=921
x=3
y=431−321+331...∞
y=41+3131
y=441
y=221
y=2
z=(1+i)11+(1+i)21+(1+i)31...∞
Since
it is a G.P with a common ratio of (1+i)1 we get the
sum
as
=1−1+i11+i1
=i1
=−i.
Hence
x+yz=3−2i
tanθ=3−2
θ=tan−1(3−2)
=−tan−1(32)