সমীকরণ সমাধান
θ এর কোন লঘিষ্ঠ ধনাত্মক মানের জন্য 2cos3θ=√3 হয়?
5π/18
5π/6
2π/3
π/18
cos3θ=32⇒3θ=π6∴θ=π18 \begin{array}{l} \cos 3 \theta=\frac{\sqrt{3}}{2} \Rightarrow 3 \theta=\frac{\pi}{6} \\ \therefore \theta=\frac{\pi}{18} \end{array} cos3θ=23⇒3θ=6π∴θ=18π
Ai এর মাধ্যমে
১০ লক্ষ+ প্রশ্ন ডাটাবেজ
প্র্যাকটিস এর মাধ্যমে নিজেকে তৈরি করে ফেলো
উত্তর দিবে তোমার বই থেকে ও তোমার মত করে।
সারা দেশের শিক্ষার্থীদের মধ্যে নিজের অবস্থান যাচাই
2tan−1(cosx)=tan−1(2cosecx) 2 \tan^{- 1}{\left ( \cos{x} \right )} = \tan^{- 1}{\left ( 2 \cos{e} c x \right )} 2tan−1(cosx)=tan−1(2cosecx) এর সমাধান -
sinx.sin2x.sin3x=34 \sin{x} . \sin{2} x . \sin{3} x = \frac{\sqrt{3}}{4} sinx.sin2x.sin3x=43 হলে X এর মান কোনটি?
tanx = √3 ; 0 < x < 2π
নির্দিষ্ট সীমার মধ্যে সমাধান কত?
উদ্দীপক-১: A=cot−17,B=cot−13,g(A)=cos2A,h(B)=sin4B. A=\cot ^{-1} 7, B=\cot ^{-1} 3, g(A)=\cos 2 A, h(B)=\sin 4 B. A=cot−17,B=cot−13,g(A)=cos2A,h(B)=sin4B.
উদ্দীপক-২: f(α)=cosα,g(α)=sin2α,h(α)=12. \mathbf{f}(\alpha)=\cos \alpha, \mathbf{g}(\alpha)=\sin 2 \alpha, h(\alpha)=\frac{1}{\sqrt{2}} .f(α)=cosα,g(α)=sin2α,h(α)=21.