x sin (α+y)=siny and y′=(x2+)2nx+1m, then-
হানি নাটস
দেয়া আছে,
⇒⇒⇒xsin(α+y)=sinyxsinαcosy+xcosαsiny=sinysiny−xcosαsiny=xsinαcosysiny(1−xcosα)=xsinαcosy
⇒cosysiny=1−xcosαxsinα⇒tany=1−xcosαxsinα⇒y=tan−11−xcosαxsinα
⇒dxdy=1+(1−xcosαxsinα)21×(1−xcosα)2sinα(1−xcosα)−xsinαcosα(−1)
⇒y′=(1−xcosα)2(1−xcosα)2+(xsinα)21×(1−xcosα)2sinα−xsinαcosα+xsinαcosα
⇒y′=(1−xcosα)2+(xsinα)2(1−xcosα)2×(1−xcosα)2sinα
⇒y′=x2⋅sin2α+1−2xcosα+x2cos2αsinα⇒y′=x2(sin2α+cos2α)−2xcosα+1sinα
⇒y′=x2−2xcosα+1sinα…(i)
দেয়া আছে,
y′=x2+2nx+1m…(ii)
(i) ও (ii) তুলনা করে পাই,
∴==m=sinα;n=−cosαm2+n2(sinα)2+(−cosα)2sin2α+cos2α
=1∴m2+n2=1