Ifϕ(x)=ϕ′(x)andϕ(1)=2,thenϕ(3)equals
হানি নাটস
Let,
y=ϕ(x)∴dxdy=ϕ′(x)ϕ(x)=ϕ′(x)
⇒y=dxdy⇒dxdy=y⇒ydy=dx⇒∫ydy=∫x⇒ln∣y∣=x+lnc
⇒ln∣y∣−lne=x⇒ln(cy)=x
⇒ln(ky)=x⇒ky=ex⇒y=k1ex
e1=k= constant =k1
y=k1ex⇒ϕ(x)=k1ex⇒ϕ(1)=k1e⇒2=k1e⇒k1=e2
∴ϕ(x)=e2⋅ex⇒ϕ(x)=2e(x−1)
⇒ϕ(3)=2⋅e(3−1)=2e2