নির্দিষ্ট যোগজ
f(x)=lnxx2+1……(i)g(x)=x2+1…(ii) \begin{array}{l}f(x)=\frac{\ln x}{x^{2}+1} \ldots…(i) \\ g(x)=x^{2}+1…(ii) \end{array} f(x)=x2+1lnx……(i)g(x)=x2+1…(ii)
∫(f(sinx2+cosx2)2)dx\int\left(f(\sin \frac{x}{2}+\cos \frac{x}{2}\right)^{2}) d x ∫(f(sin2x+cos2x)2)dx নির্ণয় কর।
(i) বক্ররেখার x = 2 বিন্দুতে স্পর্শকের সমীকরণ নির্ণয় কর।
এর মান নির্ণয় কর।
Ai এর মাধ্যমে
১০ লক্ষ+ প্রশ্ন ডাটাবেজ
প্র্যাকটিস এর মাধ্যমে নিজেকে তৈরি করে ফেলো
উত্তর দিবে তোমার বই থেকে ও তোমার মত করে।
সারা দেশের শিক্ষার্থীদের মধ্যে নিজের অবস্থান যাচাই
I1=1(1+x2)(tan−1x)2 এবং I2=tan−1x−\mathrm{ I_{1}=\frac{1}{\left(1+x^{2}\right)\left(\tan ^{-1} x\right)^{2}} \text { এবং } I_{2}=\tan ^{-1} x^{-} }I1=(1+x2)(tan−1x)21 এবং I2=tan−1x−
দৃশ্যকল্প-১: f(θ)=cos3θ,g(θ)=sinθ. \mathbf{f}(\theta)=\cos ^{3} \theta, \mathbf{g}(\theta)=\sin \theta. f(θ)=cos3θ,g(θ)=sinθ.দৃশ্যকল্প-২: x2+y2=36 \mathrm{x}^{2}+\mathrm{y}^{2}=36 x2+y2=36.
উদ্দীপক-১
উদ্দীপক-২
F(x,y)=x2+y2 \mathrm{F}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{2}+\mathrm{y}^{2} F(x,y)=x2+y2