Three sides of a triangle have the equations L r = y − m r x − C r = 0 ; r = 1 , 2 , 3 L_{r} = y - m_r x - C_{r} = 0; r = 1, 2, 3 L r = y − m r x − C r = 0 ; r = 1 , 2 , 3 . Then λ L 2 L 3 + μ L 3 L 1 + γ L 1 L 2 = 0 \lambda L_{2}L_{3} + \mu L_{3}L_{1} + \gamma L_{1}L_{2} = 0 λ L 2 L 3 + μ L 3 L 1 + γ L 1 L 2 = 0 . where λ ≠ 0 , μ ≠ 0 , γ ≠ 0 \lambda \neq 0, \mu \neq 0, \gamma \neq 0 λ = 0 , μ = 0 , γ = 0 , is the equation of circumcircle of triangle if
হানি নাটস
ক
λ ( m 2 + m 3 ) + μ ( m 3 + m 1 ) + γ ( m 1 + m 2 ) = 0 \lambda (m_{2} + m_{3}) + \mu (m_{3} + m_{1}) + \gamma (m_{1} + m_{2}) = 0 λ ( m 2 + m 3 ) + μ ( m 3 + m 1 ) + γ ( m 1 + m 2 ) = 0
খ
λ ( m 2 m 3 − 1 ) + μ ( m 3 m 1 − 1 ) + γ ( m 1 m 2 − 1 ) = 0 \lambda (m_{2}m_{3} - 1) + \mu (m_{3}m_{1} - 1) + \gamma (m_{1}m_{2} - 1) = 0 λ ( m 2 m 3 − 1 ) + μ ( m 3 m 1 − 1 ) + γ ( m 1 m 2 − 1 ) = 0
গ
Both ( a ) (a) ( a ) and ( b ) (b) ( b ) hold together
Solution: Given that;
Equation of three sides of triangle: L 1 = y − m 1 x − C 1 = 0 L_{1}=y-m_{1} x-C_{1}=0 L 1 = y − m 1 x − C 1 = 0
L 2 = y − m 2 x − c 2 = 0 L 3 = y − m 3 x − c 3 = 0 \begin{array}{l} L_{2}=y-m_{2} x-c_{2}=0 \\ L_{3}=y-m_{3} x-c_{3}=0 \end{array} L 2 = y − m 2 x − c 2 = 0 L 3 = y − m 3 x − c 3 = 0
Equation of circumcircle = λ L 2 L 3 + μ L 3 L 1 + γ L 1 L 2 = 0 =\lambda L_{2} L_{3}+\mu L_{3} L_{1}+\gamma L_{1} L_{2}=0 = λ L 2 L 3 + μ L 3 L 1 + γ L 1 L 2 = 0 Now,
since λ L 2 L 3 + μ L 3 L + r L 2 L 1 = 0 \lambda L_{2} L_{3}+\mu L_{3} L+r L_{2} L_{1}=0 λ L 2 L 3 + μ L 3 L + r L 2 L 1 = 0
⇒ λ ( y − m 3 x − c 3 ) ( y − m 2 x − c 2 ) + μ ( y − m 3 x − c 3 ) ( y − m 1 x − c 1 ) + γ ( y − m 2 x − c 2 ) ( y − m 1 x − c 1 ) = 0 \begin{aligned} \Rightarrow & \lambda\left(y-m_{3} x-c_{3}\right)\left(y-m_{2} x-c_{2}\right)+\mu\left(y-m_{3} x-c_{3}\right)\left(y-m_{1} x-c_{1}\right)+ \\ & \gamma\left(y-m_{2} x-c_{2}\right)\left(y-m_{1} x-c_{1}\right)=0 \end{aligned} ⇒ λ ( y − m 3 x − c 3 ) ( y − m 2 x − c 2 ) + μ ( y − m 3 x − c 3 ) ( y − m 1 x − c 1 ) + γ ( y − m 2 x − c 2 ) ( y − m 1 x − c 1 ) = 0
∵ \because ∵ This is the equation of a circle,
∴ \therefore ∴ Coefficient of x 2 = x^{2}= x 2 = Coefficient of y 2 & y^{2} \& y 2 & Coefficient of x y = 0 x y=0 x y = 0
⇒ + λ m 3 m 2 + μ ( + m 3 m 1 ) + γ ( m 1 m 2 ) = λ + μ + γ ⇒ λ ( m 3 m 2 − 1 ) + μ ( m 3 m 1 − 1 ) + γ ( m 1 m 2 − 1 ) = 0 \begin{array}{l} \Rightarrow+\lambda m_{3} m_{2}+\mu\left(+m_{3} m_{1}\right)+\gamma\left(m_{1} m_{2}\right)=\lambda+\mu+\gamma \\ \Rightarrow \lambda\left(m_{3} m_{2}-1\right)+\mu\left(m_{3} m_{1}-1\right)+\gamma\left(m_{1} m_{2}-1\right)=0 \end{array} ⇒ + λ m 3 m 2 + μ ( + m 3 m 1 ) + γ ( m 1 m 2 ) = λ + μ + γ ⇒ λ ( m 3 m 2 − 1 ) + μ ( m 3 m 1 − 1 ) + γ ( m 1 m 2 − 1 ) = 0
Also,
− λ m 2 − λ m 3 − μ m 3 − μ m 1 − γ m 2 − γ m 1 = 0 ⇒ λ m 2 + λ m 3 + μ m 3 + μ m 1 + γ m 2 + γ m 1 = 0 ⇒ λ ( m 2 + m 3 ) + μ ( m 1 + m 3 ) + γ ( m 1 + m 2 ) = 0 \begin{array}{l} -\lambda m_{2}-\lambda m_{3}-\mu m_{3}-\mu m_{1}-\gamma m_{2}-\gamma m_{1}=0 \\ \Rightarrow \lambda m_{2}+\lambda m_{3}+\mu m_{3}+\mu m_{1}+\gamma m_{2}+\gamma m_{1}=0 \\ \Rightarrow \lambda\left(m_{2}+m_{3}\right)+\mu\left(m_{1}+m_{3}\right)+\gamma\left(m_{1}+m_{2}\right)=0 \end{array} − λ m 2 − λ m 3 − μ m 3 − μ m 1 − γ m 2 − γ m 1 = 0 ⇒ λ m 2 + λ m 3 + μ m 3 + μ m 1 + γ m 2 + γ m 1 = 0 ⇒ λ ( m 2 + m 3 ) + μ ( m 1 + m 3 ) + γ ( m 1 + m 2 ) = 0
Hence, option (A) is correct.