Three right angled prisms of refractive indices μ 1 \mu_1 μ 1 , μ 2 \mu_2 μ 2 and μ 3 \mu_3 μ 3 are joined together ao that the faces of the middle prism are each in contact with one of the outside prisms. If the ray passes through the composite block undeviated, then
হানি নাটস
ক
1 + μ 2 2 = μ 1 2 + μ 3 2 1 + \mu _2^2 = \mu _1^2 + \mu _3^2 1 + μ 2 2 = μ 1 2 + μ 3 2
খ
μ 1 2 − μ 3 2 + μ 2 3 = 1 {\mu_1}^2-{\mu_3}^2+{\mu_2}^3 = 1 μ 1 2 − μ 3 2 + μ 2 3 = 1
গ
μ 1 2 − μ 3 2 − μ 2 3 = 1 {\mu_1}^2-{\mu_3}^2-{\mu_2}^3 = 1 μ 1 2 − μ 3 2 − μ 2 3 = 1
ঘ
μ 2 2 + μ 3 3 − μ 2 1 = 1 {\mu_2}^2+{\mu_3}^3-{\mu_2}^1 = 1 μ 2 2 + μ 3 3 − μ 2 1 = 1
α = 90 − r i \alpha = 90-r_i α = 90 − r i
β = 90 − r 2 \beta = 90-r_2 β = 90 − r 2
γ = 90 − r 3 \gamma = 90-r_3 γ = 90 − r 3
A p p l y i n g s n e l l ′ s L a w a t e a c h s u r f a c e A t B , sin i = μ 1 sin r 1 ⇒ sin 2 i = μ 1 2 sin 2 r 1 A t C μ 1 sin ( 90 − r 2 ) = μ 2 sin r 2 ⇒ μ 1 2 cos 2 r 2 = μ 2 2 sin 2 r 2 A t D μ 2 sin ( 90 − r 2 ) = μ 3 sin r 3 ⇒ μ 2 2 cos 2 r 2 = μ 3 2 sin 2 r 3 A t E , n 3 sin ( 90 − r 3 ) = sin ( 90 − i ) ⇒ μ 3 2 cos 2 r 3 = cos 2 i A d d i n g a l l a b o v e e q u a t i o n s g i v e s , 1 + μ 2 2 = μ 1 2 + μ 3 2 H e n c e , t h e o p t i o n A i s t h e c o r r e c t a n s w e r . \begin{array}{l} Applying\, snell's\, Law\, at\, each\, surface \\ AtB, \\ \sin i={ \mu _{ 1 } }\sin { r_{ 1 } } \Rightarrow { \sin ^{ 2 } }i=\mu _{ 1 }^{ 2 }{ \sin ^{ 2 } }{ r_{ 1 } } \\ At\, C \\ { \mu _{ 1 } }\sin \left( { 90-{ r_{ 2 } } } \right) ={ \mu _{ 2 } }\sin { r_{ 2 } } \Rightarrow \mu _{ 1 }^{ 2 }{ \cos ^{ 2 } }{ r_{ 2 } }=\mu _{ 2 }^{ 2 }{ \sin ^{ 2 } }{ r_{ 2 } } \\ At\, D \\ { \mu _{ 2 } }\sin \left( { 90-{ r_{ 2 } } } \right) ={ \mu _{ 3 } }\sin { r_{ 3 } } \Rightarrow \mu _{ 2 }^{ 2 }{ \cos ^{ 2 } }{ r_{ 2 } }=\mu _{ 3 }^{ 2 }{ \sin ^{ 2 } }{ r_{ 3 } } \\ At\, E, \\ { n_{ 3 } }\sin \left( { 90-{ r_{ 3 } } } \right) =\sin \left( { 90-i } \right) \Rightarrow \mu _{ 3 }^{ 2 }{ \cos ^{ 2 } }{ r_{ 3 } }={ \cos ^{ 2 } }i \\ Adding\, all\, above\, equations\, \, gives, \\ 1+\mu _{ 2 }^{ 2 }=\mu _{ 1 }^{ 2 }+\mu _{ 3 }^{ 2 } \\ Hence,\, the\, option\, \, A\, is\, the\, correct\, answer. \end{array} A ppl y in g s n e l l ′ s L a w a t e a c h s u r f a ce A tB , sin i = μ 1 sin r 1 ⇒ sin 2 i = μ 1 2 sin 2 r 1 A t C μ 1 sin ( 90 − r 2 ) = μ 2 sin r 2 ⇒ μ 1 2 cos 2 r 2 = μ 2 2 sin 2 r 2 A t D μ 2 sin ( 90 − r 2 ) = μ 3 sin r 3 ⇒ μ 2 2 cos 2 r 2 = μ 3 2 sin 2 r 3 A t E , n 3 sin ( 90 − r 3 ) = sin ( 90 − i ) ⇒ μ 3 2 cos 2 r 3 = cos 2 i A dd in g a ll ab o v e e q u a t i o n s g i v es , 1 + μ 2 2 = μ 1 2 + μ 3 2 He n ce , t h e o pt i o n A i s t h e correc t an s w er .