The value of x→1lim(2−x)tan(2πx) is
হানি নাটস
Let L=limx→1(2−x)tan(2πx). Taking the natural logarithm of both sides:
lnL=limx→1tan(2πx)⋅ln(2−x)
lnL=limx→1tan(2πx)⋅ln(2−x)
lnL=limx→1cot(2πx)ln(2−x)
As x→1, both the numerator and denominator approach 0, so we can apply L'Hôpital's Rule.
Differentiate the numerator and the denominator with respect to x :
dxdln(2−x)=−2−x1dxdcot(2πx)=−2πcsc2(2πx)
Now, apply L'Hôpital's Rule:
lnL=limx→1−2πcsc2(2πx)−2−x1=limx→1π(2−x)cosec2(2πx)2
so the overall expression approaches:
lnL=π2
L=eπ2