মিশ্র ফাংশন সংক্রান্ত
the value of limx→0sinαX−sinβXeαX−eβX\underset { x\rightarrow 0 }{ lim } \frac { sin\alpha X-sin\beta X }{ { e }^{ \alpha X }-{ e }^{ \beta X } } x→0limeαX−eβXsinαX−sinβX equals
0
1
-1
α−β\alpha -\beta α−β
Ai এর মাধ্যমে
১০ লক্ষ+ প্রশ্ন ডাটাবেজ
প্র্যাকটিস এর মাধ্যমে নিজেকে তৈরি করে ফেলো
উত্তর দিবে তোমার বই থেকে ও তোমার মত করে।
সারা দেশের শিক্ষার্থীদের মধ্যে নিজের অবস্থান যাচাই
The value of limx→−1π−cos−1xx+1\lim_{x \rightarrow -1} \dfrac{\sqrt{\pi}-\sqrt{\cos^{-1}x}}{\sqrt{x+1}}limx→−1x+1π−cos−1x is given by
limx→0sinxx=y\underset {x\rightarrow 0}{\lim} \frac {\sin x}{x} = y x→0limxsinx=y
If L=limx→0sinx+aex+be−x+cln(1+x)x3=∞ L=\displaystyle \lim _{x \rightarrow 0} \dfrac{\sin x+a e^{x}+b e^{-x}+c \ln (1+x)}{x^{3}}=\infty L=x→0limx3sinx+aex+be−x+cln(1+x)=∞
Equation ax2+bx+c=0 a x^{2}+b x+c=0 ax2+bx+c=0 has
The value of limx→1(2−x)tan(πx2)\underset{x\rightarrow 1}{lim}(2-x)^{tan\left(\dfrac{\pi x}{2}\right)}x→1lim(2−x)tan(2πx) is