ত্রিকোনমিতিক ফাংশনের অন্তরজ
If the functions f(x)=sin(x+a) \displaystyle f\left ( x \right )=\sin \left ( x+a \right ) f(x)=sin(x+a) and g(x)=bsinx+ccosx \displaystyle g\left ( x \right )=b\sin x+c\cos x g(x)=bsinx+ccosx satisfy f(0)=g(0) \displaystyle f\left ( 0 \right )=g\left ( 0 \right ) f(0)=g(0) and f′(0)=g′(0) \displaystyle {f}'\left ( 0 \right )={g}'\left ( 0 \right ) f′(0)=g′(0) then
b=π2 \displaystyle b=\dfrac{\pi}2 b=2π
b=cosa \displaystyle b=\cos a b=cosa
c=sina \displaystyle c=\sin a c=sina
c=cosa \displaystyle c=\cos a c=cosa
Given, f(x)=sin(x+a)f(x)=\sin(x+a)\quad f(x)=sin(x+a)
Ai এর মাধ্যমে
১০ লক্ষ+ প্রশ্ন ডাটাবেজ
প্র্যাকটিস এর মাধ্যমে নিজেকে তৈরি করে ফেলো
উত্তর দিবে তোমার বই থেকে ও তোমার মত করে।
সারা দেশের শিক্ষার্থীদের মধ্যে নিজের অবস্থান যাচাই
dydx\displaystyle\frac{dy}{dx}dxdy at t=π4\displaystyle t=\frac{\pi}{4}t=4π for x=a[cost+12logtan2t2]\displaystyle x=a\left[\cos{t}+\frac{1}{2}\log{\tan^2{\frac{t}{2}}}\right]x=a[cost+21logtan22t] and y=asinty=a\sin{t}y=asint is
If the prime sign (') represents differentiation w.r.t. xxx and f′=sinx+sin4x.cosxf^{'}=\sin x+\sin 4x.\cos xf′=sinx+sin4x.cosx, then f′(2x2+π2)f^{'}\left ( 2x^{2}+\cfrac{\pi }{2} \right )f′(2x2+2π) at x=π2x=\sqrt{\dfrac{\pi }{2}}x=2π is equal to
y=log(secx) হলে dy/dx=কত?
If cos4θx+sin4θy=1x+y\displaystyle \frac { \cos ^{ 4 }{ \theta } }{ x } +\frac { \sin ^{ 4 }{ \theta } }{ y } =\frac { 1 }{ x+y } xcos4θ+ysin4θ=x+y1 then dydx=\displaystyle \frac { dy }{ dx } =dxdy=