If ϕ(x)=n→∞lim1+x2nx2nf(x)+g(x), then
হানি নাটস
We have,
n→∞limx2n=⎩⎨⎧0,∞,1,if∣x∣<1if∣x∣>1if∣x∣=1
Thus, we have the following cases:
CASE I When −1<x<1
In this case, we have n→∞limx2n=0
∴ϕ(x)=n→∞lim1+x2nx2nf(x)+g(x)=g(x)
CASE II When ∣x∣>1
In this case, we have n→∞limx2n1=0
∴ϕ(x)=n→∞lim1+x2nx2nf(x)+g(x)
⇒ϕ(x)=n→∞lim1+x2n1f(x)+x2ng(x)=1+0f(x)+0=f(x)
CASE III When ∣x∣=1
In this case, we have x2n=1⇒n→∞limx2n=1.
∴ϕ(x)=2f(x)+g(x)