If L=x→0limx3sinx+aex+be−x+cln(1+x)=∞
Equation ax2+bx+c=0 has
হানি নাটস
Given :- L=limx→0x3Sin+aex+be−x+cln(1+x)=∞
To find: - Roots of equation ax2+bx+c=0
limx→0x3sinx+aex+be−x+cln(1+x)=∞
Applying La Hospital Rule
limx→0(x−3!x3)+a(1+1!x+2!x2+3!x3)+b(1−1!x+2!x2−3!x3)+c(x−2x2+3x3)×x31=limx→0(a+b)+(1+a−b+c)x+(2a+2b−2c)x2+(3!−1+3!a3!−b+3c)×x31a+b=0− (1) 1+a−b+c=0−(2)2a+2b−2c=0
Eq (3) can be written as
a+b=c
Comparing (1) and (4)
C=0
Put ( x ) in
1+a−b+0=0⇒a−b=−1
Subteacting (1) and (5)
Put (∗∗) in (1) a+b=0−21+b=0⇒b=21−(∗∗)ax2+bx+c=0⇒2−1x2+21x+c=0⇒x2−x=0D=b2−4ac=1−4×1×0=10>0 real roots x(x−1)=0x=0,1