মিশ্র ফাংশন সংক্রান্ত
limx→0(1sin2x−1sinh2x)=?\displaystyle\lim_{x\rightarrow 0}\left(\dfrac{1}{\sin^2x}-\dfrac{1}{\sin h^2x}\right)=?x→0lim(sin2x1−sinh2x1)=?
2/32 /32/3
000
1/31 /31/3
−2/3-2 /3−2/3
limx→0(1sin2x−1sinh2x)=limx→0(sinh2x−sin2xsin2xsinh2x) \begin{aligned} & \lim _{x \rightarrow 0}\left(\frac{1}{\sin ^{2} x}-\frac{1}{\sinh ^{2} x}\right) \\ = & \lim _{x \rightarrow 0}\left(\frac{\sinh ^{2} x-\sin ^{2} x}{\sin ^{2} x \sinh ^{2} x}\right)\end{aligned} =x→0lim(sin2x1−sinh2x1)x→0lim(sin2xsinh2xsinh2x−sin2x)
=limx→0(x+x33!+x55!+⋯ )2−(x−x33!+x55!+⋯ )2(x−x33!+x55!−⋯ )2(x+x33!+x55!+…)2 =\lim _{x \rightarrow 0} \frac{\left(x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots \right)^{2}-\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots\right)^{2}}{\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)^{2}\left(x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+…\right)^{2}} =limx→0(x−3!x3+5!x5−⋯)2(x+3!x3+5!x5+…)2(x+3!x3+5!x5+⋯)2−(x−3!x3+5!x5+⋯)2
=limx→0(x2+x6(3!)2+2x43!)−(x2+x6(3!)2−2x43!)x4(1−x2(3!)2−⋯ )(1+x2(3)2+⋯ ) =\lim _{x \rightarrow 0} \frac{\left(x^{2}+\frac{x^{6}}{(3!)^{2}}+\frac{2 x^{4}}{3!}\right)-\left(x^{2}+\frac{x^{6}}{(3!)^{2}}-\frac{2 x^{4}}{3!}\right)}{x^{4}\left(1-\frac{x^{2}}{(3!)^{2}}-\cdots\right)\left(1+\frac{x^{2}}{(3)^{2}}+\cdots\right)} =limx→0x4(1−(3!)2x2−⋯)(1+(3)2x2+⋯)(x2+(3!)2x6+3!2x4)−(x2+(3!)2x6−3!2x4)
=limx→02⋅2x43!x4⋅1 =\lim _{x \rightarrow 0} \frac{2 \cdot \frac{2 x^{4}}{3!}}{x^{4} \cdot 1} =limx→0x4⋅12⋅3!2x4
=46=23=\frac{4}{6} =\frac{2}{3}=64=32
Ai এর মাধ্যমে
১০ লক্ষ+ প্রশ্ন ডাটাবেজ
প্র্যাকটিস এর মাধ্যমে নিজেকে তৈরি করে ফেলো
উত্তর দিবে তোমার বই থেকে ও তোমার মত করে।
সারা দেশের শিক্ষার্থীদের মধ্যে নিজের অবস্থান যাচাই
limx→01xx(a arc tanxa−b arc tanxb)\displaystyle \lim_{x \rightarrow 0}\dfrac {1}{x\sqrt {x}}\left(a\ arc\ tan \dfrac {\sqrt {x}}{a}-b\ arc\ \tan \dfrac {\sqrt {x}}{b}\right)x→0limxx1(a arc tanax−b arc tanbx) has the value equal to
Let a∈(0,π2)a \in \left( 0 , \frac { \pi } { 2 } \right)a∈(0,2π), then the value oflima→01a3∫0aℓn(1+tanatanx)dx \lim _ { a \rightarrow 0 } \frac { 1 } { a ^ { 3 } } \int _ { 0 } ^ { a } \ell n (1+tan a tan x)dxlima→0a31∫0aℓn(1+tanatanx)dx is equal to
Ltx→0tanx−xx2tanx\underset { x\rightarrow 0 }{ Lt } \cfrac {tanx-x}{x^2tanx}x→0Ltx2tanxtanx−x equals:
The value of limx→−1π−cos−1xx+1\lim_{x \rightarrow -1} \dfrac{\sqrt{\pi}-\sqrt{\cos^{-1}x}}{\sqrt{x+1}}limx→−1x+1π−cos−1x is given by